Page 60 - Vitamin D and Cancer
P. 60
2 The Molecular Cancer Biology of the VDR 47
77. Murayama A, Kim MS, Yanagisawa J, Takeyama K, Kato S (2004) Transrepression by a
liganded nuclear receptor via a bHLH activator through co-regulator switching. EMBO J
23:1598–1608
78. Fujiki R et al (2005) Ligand-induced transrepression by VDR through association of WSTF
with acetylated histones. EMBO J 24:3881–3894
79. Kim MS et al (2007) 1Alpha, 25(OH)2D3-induced transrepression by vitamin D receptor
through E-box-type elements in the human parathyroid hormone gene promoter. Mol
Endocrinol 21:334–342
80. Turunen MM, Dunlop TW, Carlberg C, Vaisanen S (2007) Selective use of multiple vitamin
D response elements underlies the 1 alpha, 25-dihydroxyvitamin D3-mediated negative regu-
lation of the human CYP27B1 gene. Nucleic Acids Res 35:2734–2747
81. Song CS et al (2005) An essential role of the CAAT/enhancer binding protein-{alpha} in the
vitamin D induced expression of the human steroid/bile acid-sulfotransferase (SULT2A1).
Mol Endocrinol 20(4):795–808
82. Eeckhoute J, Carroll JS, Geistlinger TR, Torres-Arzayus MI, Brown M (2006) A cell-type-
specific transcriptional network required for estrogen regulation of cyclin D1 and cell cycle
progression in breast cancer. Genes Dev 20:2513–2526
83. Turner BM (1998) Histone acetylation as an epigenetic determinant of long-term transcrip-
tional competence. Cell Mol Life Sci 54:21–31
84. Jenuwein T, Allis CD (2001) Translating the histone code. Science 293:1074–1080
85. Turner BM (2002) Cellular memory and the histone code. Cell 111:285–291
86. Hartman HB, Yu J, Alenghat T, Ishizuka T, Lazar MA (2005) The histone-binding code of
nuclear receptor co-repressors matches the substrate specificity of histone deacetylase 3.
EMBO Rep 6:445–451
87. Strahl BD et al (2001) Methylation of histone H4 at arginine 3 occurs in vivo and is mediated
by the nuclear receptor coactivator PRMT1. Curr Biol 11:996–1000
88. Shogren-Knaak M et al (2006) Histone H4-K16 acetylation controls chromatin structure and
protein interactions. Science 311:844–847
89. Shi X et al (2006) ING2 PHD domain links histone H3 lysine 4 methylation to active gene
repression. Nature 442:96–99
90. Varambally S et al (2002) The polycomb group protein EZH2 is involved in progression of
prostate cancer. Nature 419:624–629
91. Yu J, Li Y, Ishizuka T, Guenther MG, Lazar MA (2003) A SANT motif in the SMRT corepres-
sor interprets the histone code and promotes histone deacetylation. EMBO J 22:3403–3410
92. Roux C et al (2008) New insights into the role of vitamin D and calcium in osteoporosis
management: an expert roundtable discussion. Curr Med Res Opin 24:1363–1370
93. Dawson-Hughes B et al (2005) Estimates of optimal vitamin D status. Osteoporos Int
16:713–716
94. Yoshizawa T et al (1997) Mice lacking the vitamin D receptor exhibit impaired bone forma-
tion, uterine hypoplasia and growth retardation after weaning. Nat Genet 16:391–396
95. Li YC et al (1997) Targeted ablation of the vitamin D receptor: an animal model of vitamin
D-dependent rickets type II with alopecia. Proc Natl Acad Sci USA 94:9831–9835
96. Van Cromphaut SJ et al (2001) Duodenal calcium absorption in vitamin D receptor-knockout
mice: functional and molecular aspects. Proc Natl Acad Sci USA 98:13324–13329
97. Dontu G, Al Hajj M, Abdallah WM, Clarke MF, Wicha MS (2003) Stem cells in normal
breast development and breast cancer. Cell Prolif 36(Suppl 1):59–72
98. Reya T, Clevers H (2005) Wnt signalling in stem cells and cancer. Nature 434:843–850
99. Al Hajj M, Clarke MF (2004) Self-renewal and solid tumor stem cells. Oncogene
23:7274–7282
100. Al Hajj M, Becker MW, Wicha M, Weissman I, Clarke MF (2004) Therapeutic implications
of cancer stem cells. Curr Opin Genet Dev 14:43–47
101. De Marzo AM, Nelson WG, Meeker AK, Coffey DS (1998) Stem cell features of benign and
malignant prostate epithelial cells. J Urol 160:2381–2392