Page 59 - Vitamin D and Cancer
P. 59

46                                            J. Thorne and M.J. Campbell

              56. Lee JW, Choi HS, Gyuris J, Brent R, Moore DD (1995) Two classes of proteins dependent
               on either the presence or absence of thyroid hormone for interaction with the thyroid hor-
               mone receptor. Mol Endocrinol 9:243–254
              57. Zhang C et al (2003) Nuclear coactivator-62 kDa/Ski-interacting protein is a nuclear matrix-
               associated coactivator that may couple vitamin D receptor-mediated transcription and RNA
               splicing. J Biol Chem 278:35325–35336
              58. Urahama N et al (2005) The role of transcriptional coactivator TRAP220 in myelomonocytic
               differentiation. Genes Cells 10:1127–1137
              59. Ren Y et al (2000) Specific structural motifs determine TRAP220 interactions with nuclear
               hormone receptors. Mol Cell Biol 20:5433–5446
              60. Teichert A et al (2009) Quantification of the Vitamin D Receptor-Coregulator Interaction
               (dagger). Biochemistry 48(7):1254–61
              61. Hawker NP, Pennypacker SD, Chang SM, Bikle DD (2007) Regulation of human epidermal
               keratinocyte differentiation by the vitamin D receptor and its coactivators DRIP205, SRC2,
               and SRC3. J Invest Dermatol 127:874–880
              62. Lutz W, Kohno K, Kumar R (2001) The role of heat shock protein 70 in vitamin D receptor
               function. Biochem Biophys Res Commun 282:1211–1219
              63. Guzey M, Takayama S, Reed JC (2000) BAG1L enhances trans-activation function of the
               vitamin D receptor. J Biol Chem 275:40749–40756
              64. Bikle D, Teichert A, Hawker N, Xie Z, Oda Y (2007) Sequential regulation of keratinocyte
               differentiation by 1, 25(OH)2D3, VDR, and its coregulators. J Steroid Biochem Mol Biol
               103:396–404
              65. Blok LJ, de Ruiter PE, Brinkmann AO (1996) Androgen receptor phosphorylation. Endocr
               Res 22:197–219
              66. Hilliard GMT, Cook RG, Weigel NL, Pike JW (1994) 1, 25-dihydroxyvitamin D3 modulates
               phosphorylation of serine 205 in the human vitamin D receptor: site-directed mutagenesis of
               this residue promotes alternative phosphorylation. Biochemistry 33:4300–4311
              67. Hsieh JC et al (1991) Human vitamin D receptor is selectively phosphorylated by protein
               kinase C on serine 51, a residue crucial to its trans-activation function. Proc Natl Acad Sci
               USA 88:9315–9319
              68. Macoritto M et al (2008) Phosphorylation of the human retinoid X receptor alpha at serine
               260 impairs coactivator(s) recruitment and induces hormone resistance to multiple ligands.
               J Biol Chem 283:4943–4956
              69. Arriagada G et al (2007) Phosphorylation at serine 208 of the 1[alpha], 25-dihydroxy vita-
               min  D3  receptor  modulates  the  interaction  with  transcriptional  coactivators.  J  Steroid
               Biochem Mol Biol 103:425–429
              70. Jurutka PW et al (1996) Human vitamin D receptor phosphorylation by casein kinase II at
               Ser-208 potentiates transcriptional activation. Proc Natl Acad Sci USA 93:3519–3524
              71. Barletta F, Freedman LP, Christakos S (2002) Enhancement of VDR-mediated transcription
               by phosphorylation: correlation with increased interaction between the VDR and DRIP205,
               a subunit of the VDR-interacting protein coactivator complex. Mol Endocrinol 16:301–314
              72. Carlberg C, Seuter S (2007) The vitamin D receptor. Dermatol Clin 25:515–523, viii
              73. Thompson PD et al (2002) Liganded VDR induces CYP3A4 in small intestinal and colon
               cancer  cells  via  DR3  and  ER6  vitamin  D  responsive  elements.  Biochem  Biophys  Res
               Commun 299:730–738
              74. Song CS et al (2006) An essential role of the CAAT/enhancer binding protein-alpha in the
               vitamin D-induced expression of the human steroid/bile acid-sulfotransferase (SULT2A1).
               Mol Endocrinol 20:795–808
              75. Rosenfeld MG, Lunyak VV, Glass CK (2006) Sensors and signals: a coactivator/corepressor/
               epigenetic code for integrating signal-dependent programs of transcriptional response. Genes
               Dev 20:1405–1428
              76. Chen CD et al (2004) Molecular determinants of resistance to antiandrogen therapy. Nat
               Med 10:33–39
   54   55   56   57   58   59   60   61   62   63   64