Page 58 - Vitamin D and Cancer
P. 58

2  The Molecular Cancer Biology of the VDR                      45

              33. Efer R, Wagner EF (2003) AP-1: a double-edged sword in tumorigenesis. Nat Rev Cancer
               3:859–868
              34. Watt FM, Frye M, Benitah SA (2008) MYC in mammalian epidermis: how can an oncogene
               stimulate differentiation? Nat Rev Cancer 8:234–242
              35. Thorne JL, Campbell MJ, Turner BM (2009) Transcription factors, chromatin and cancer. Int
               J Biochem Cell Biol 41:164–175
              36. Lefterova MI et al (2008) PPAR{gamma} and C/EBP factors orchestrate adipocyte biology
               via adjacent binding on a genome-wide scale. Genes Dev 22:2941–2952
              37. Lupien M et al (2008) FoxA1 translates epigenetic signatures into enhancer-driven lineage-
               specific transcription. Cell 132:958–970
              38. Goodson ML, Jonas BA, Privalsky ML (2005) Alternative mRNA splicing of SMRT creates
               functional diversity by generating corepressor isoforms with different affinities for different
               nuclear receptors. J Biol Chem 280(9):7493–503
              39. Jepsen K et al (2007) SMRT-mediated repression of an H3K27 demethylase in progression
               from neural stem cell to neuron. Nature 450:415–419
              40. Alenghat T et al (2008) Nuclear receptor corepressor and histone deacetylase 3 govern cir-
               cadian metabolic physiology. Nature 456(7224):997–1000
              41. Astapova I et al (2008) The nuclear corepressor, NCoR, regulates thyroid hormone action
               in vivo. Proc Natl Acad Sci USA 105(49):19544–9
              42. Sutanto MM, Symons MS, Cohen RN (2007) SMRT recruitment by PPARgamma is medi-
               ated  by  specific  residues  located  in  its  carboxy-terminal  interacting  domain.  Mol  Cell
               Endocrinol 267:138–143
              43. Polly P et al (2000) VDR-Alien: a novel, DNA-selective vitamin D(3) receptor-corepressor
               partnership. FASEB J 14:1455–1463
              44. Lykke-Andersen K et al (2003) Disruption of the COP9 signalosome Csn2 subunit in mice
               causes deficient cell proliferation, accumulation of p53 and cyclin E, and early embryonic
               death. Mol Cell Biol 23:6790–6797
              45. Hatchell EC et al (2006) SLIRP, a small SRA binding protein, is a nuclear receptor corepres-
               sor. Mol Cell 22:657–668
              46. Hsieh JC et al (2003) Physical and functional interaction between the vitamin D receptor and
               hairless corepressor, two proteins required for hair cycling. J Biol Chem 278:38665–38674
              47. Miller J et al (2001) Atrichia caused by mutations in the vitamin D receptor gene is a phe-
               nocopy of generalized atrichia caused by mutations in the hairless gene. J Invest Dermatol
               117:612–617
              48. Xie Z, Chang S, Oda Y, Bikle DD (2005) Hairless suppresses vitamin D receptor transactiva-
               tion in human keratinocytes. Endocrinology 147(1):314–23
              49. Scsucova S et al (2005) The repressor DREAM acts as a transcriptional activator on Vitamin
               D and retinoic acid response elements. Nucleic Acids Res 33:2269–2279
              50. Fujiki R et al (2005) Ligand-induced transrepression by VDR through association of WSTF
               with acetylated histones. EMBO J 24:3881–3894
              51. Kitagawa  H  et  al  (2003)  The  chromatin-remodeling  complex  WINAC  targets  a  nuclear
               receptor to promoters and is impaired in Williams syndrome. Cell 113:905–917
              52. Ding XF et al (1998) Nuclear receptor-binding sites of coactivators glucocorticoid receptor
               interacting protein 1 (GRIP1) and steroid receptor coactivator 1 (SRC-1): multiple motifs
               with different binding specificities. Mol Endocrinol 12:302–313
              53. Eggert  M  et  al  (1995)  A  fraction  enriched  in  a  novel  glucocorticoid  receptor-interacting
               protein stimulates receptor-dependent transcription in vitro. J Biol Chem 270:30755–30759
              54. Zhang J, Fondell JD (1999) Identification of mouse TRAP100: a transcriptional coregulatory
               factor for thyroid hormone and vitamin D receptors. Mol Endocrinol 13:1130–1140
              55. Yuan CX, Ito M, Fondell JD, Fu ZY, Roeder RG (1998) The TRAP220 component of a
               thyroid hormone receptor- associated protein (TRAP) coactivator complex interacts directly
               with  nuclear  receptors  in  a  ligand-dependent  fashion.  Proc  Natl  Acad  Sci  USA
               95:7939–7944
   53   54   55   56   57   58   59   60   61   62   63